Name:

Period:

Seat#:

Worksheet #4

Mathematical Questions

- Show your work when applicable! Show units!
- Get an actual answer, including units! Box your answer!
- Some answers are provided. They are underlined at the end.
- For rate order type problems be sure to include the following information. Your work does not need to be in chart format like this, but it does need to have all the information clearly identified if not using the chart format. Here is an example of what needs to be shown.

Trials	Which [] is	Which [] is being changed and	What factor is the	Order based
being used	held constant	by what factor is it changed by	rate changed by	on rate data
1&3	[H ₂]	[O ₂] x 2	x 2	1

1)	Write the following for the single step reaction $N_2 + 3 H_2 \rightarrow 2 NH_3$ a) The rate expression for the reaction	2)	The rate constant for the single step reaction HNO ₃ + NH ₃ \rightarrow NH ₄ NO ₃ is 14.5 L /mol.sec. If the concentration of nitric acid is 0.050 M and the concentration of ammonia is 0.10 M, what will the rate of this reaction be? <u>Rate = 0.073 mol / L. sec</u>
	b) The order of the reaction for each of the reagents		
	c) The overall order of the reaction		
3)	One step rxn of nitric oxide, NO, with chlorine, Cl_2 , $2NO(q) + Cl_2(q) \rightarrow 2NOCl(q)$.	4)	$H_2S(aq) + Cl_2(aq) \rightarrow S(s) + 2HCl(aq)$ (assume single step)
	a) Write the rate law.		a) Write the rate law
	b) What is the reaction order with respect to nitric oxide?		b) What is the reaction order with respect to H_2S
	c) With respect to Cl ₂ ?		c) With respect to C_{12} ?
	d) What is the overall order?		d) What is the overall order?
5)	For the reaction of hydrogen with iodine $H_2(g) + I_2(g) \rightarrow 2HI(g)$) rela	ate the rate of disappearance of iodine vapor to the rate of

6)	W fo Fo	hen two con rm compour ortunately, th perimentally	npounds, A and nd C, by a react ne following rate / determined as	B, are mixed ion that is not ve information we s shown	together, they well understood. as	7)	In CH ob	experiments I₃NNCH₃(g) · tained:	on the → C₂l	decomposition H6(g) + N2(g) the	of az e follo	comethane, owing data v	were
							E	periment	Initia	al [azomethan	ne]	Rate	
	Γ	[A] (mol/L	.) [B] (mol/l) Rate (mo	ol/L.sec)			1		1.13E-2 M		2.8E-6 M/	s
		0.050	0.050	4.0 x	10-3			2		2.26E-2 M		5.6E-6 M/	s
	-	0.10	0.050	8.0 x	10-3				•				
	F	0.050	0.10	16x	10-2		a)	What is the	rate ex	voression for thi	s rea	oction?	
	a)	Determin	e the rate expre	ession for this r	eaction		α,	What is the	1010 0/		0100		
	b)	Determin	e the rate law fo	or this reaction			b)	What is the	rate la	w?			
8)	C) Ni 21 In	Determine $k = 32L^2/mo$ tric acid, NC 2O, and wate NO(g) + H ₂ (g a series of d sappearance	e the rate const $\frac{\ell_{sec}}{\ell_{sec}}$ D, reacts with hyper μ_{r} $\mu_{r} \rightarrow N_2O(g) + experiments, the \mu_{r} \rightarrow n_0 \otimes n_0 \otimes n_0$	tant for this rea ydrogen to give • H2O(g) e following initi btained:	e nitrous oxide,	9)	C) Ch sol ior rat	What is the lorine dioxid- luble in wate is. 2CIO ₂ + 2 e law, the fol the rxn of Cl	value of e, ClO_2 r. In ba OH- \rightarrow lowing D_2 was	t, is a reddish-ye sic solution it gi ClO3 ⁻ + ClO2 ⁻ experiments we determined	ellow ves C + H ₂ C ere ru	gas that is CIO3 ⁻ and CIO 0. To obtain un and initial	O₂ ⁻ n the I rate
		· · ·											
	Exp	periment	Initial [NO]	Initial [H2]	Rate	Т	rial	Initial [C	02]	Initial [OH-]		Rate	
		1	6.4E-3 M	2.2E-3 M	2.6E-5 M/s		1	0.060	M	0.030 M	0.0)248 <i>M</i> /s	
		2	12.8E-3 M	2.2E-3 M	1.0E-4 M/s		2	0.020	М	0.030 M	0.0	0276 <i>M</i> /s	
		3	6.4E-3 M	4.5E-3 M	5.1E-5 M/s		3	0.020	М	0.090 M	0.0	0828 <i>M</i> /s	
	a)	Find the r	ate law				a)	Obtain the	rate la	W			
	b)	Find the v NO <u>k = 2.</u>	ralue of the rate	e constant for th	ne reaction of		b)	Obtain the <u>k = 2.3 x 10</u>	×alue <u>^γ/(M²s)</u>	of the rate cons	tant		

	Experiment	Initial [I-]	Initial [CIO-]	Initial [OH-]	Rate	
	1	0.010 M	0.020 M	0.010 M	12.2E-2 M/s	
	2	0.020 M	0.010 M	0.010 M	12.2E-2 M/s	
	<u> </u>	0.010 M	0.010 M	0.010 M	3.0E-2.M/s	
		0.010 10	0.010 11	0.020 M	0.02 2 10/0	
b) Fi	nd the value of th	ne rate consta	ant.			
Look u does t	up the term "10 d his "10 degree ru	egree Celsius le" state? Is i	s rule kinetics." W t always true?	/hat 12) W re wi in in	hich of the followin action, which facto nich factors will cha the Arrhenius equa o calculating the r	In the probability of the proba
				•	Temperature Concentration	
				•	Catalyst	
Use th a) La b) La c) Fo wi d) Fo ca	e graphs to answ abel which graph abel which graph or the graph that hich is the hotter or the graph that atalyst and which	ver the follow is representii represents th temperature. represents th is with a cata	ing questions: ng the effect temp ng the effect a ca e effect temperat e effect adding a alyst.	perature has on a talyst has on a ru talyst has on a ru ure has on a rea catalyst has on	a reaction eaction ction – label which a reaction – label v	n line is the colder temperature and which line is the reaction without a
	$\left \right\rangle$					M